
February 6th 2024 — Quantstamp Verified

AINOMO

This audit report was prepared by Quantstamp, the leader in blockchain security.

Executive Summary

Type Protocol Audit

Auditors Ibrahim Abouzied, Auditing Engineer

Guillermo Escobero, Security Auditor

Sina Pilehchiha, Audit Engineer I

Adrian Koegl, Security Engineer

Timeline 2024-01-28 through 2024-02-06

Languages Solidity

Methods Architecture Review, Unit Testing, Functional

Testing, Computer-Aided Verification,

Manual Review

Specification AI Architecture

Contract Overview

Documentation Quality High

Test Quality

Source Code
Repository Commit

ainomodatalab/ainomo-
contract

f2b2655
initial audit

213

fixes

Total Issues 8 (5 Resolved)

High Risk Issues 0 (0 Resolved)

Medium Risk Issues 3 (3 Resolved)

Low Risk Issues 2 (2 Resolved)

Informational Risk Issues 2 (0 Resolved)

Undetermined Risk Issues 1 (0 Resolved)

High Risk The issue puts a large number of users’
sensitive information at risk, or is
reasonably likely to lead to
catastrophic impact for client’s
reputation or serious financial
implications for client and users.

Medium Risk The issue puts a subset of users’
sensitive information at risk, would be
detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
to moderate financial impact.

Low Risk The risk is relatively small and could not
be exploited on a recurring basis, or is a
risk that the client has indicated is low-
impact in view of the client’s business
circumstances.

Informational The issue does not post an immediate
risk, but is relevant to security best
practices or Defence in Depth.

Undetermined The impact of the issue is uncertain.

Unresolved Acknowledged the existence of the risk,
and decided to accept it without
engaging in special efforts to control it.

Acknowledged The issue remains in the code but is a
result of an intentional business or
design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice
(e.g., gas analysis, deployment
settings).

Fixed Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Mitigated Implemented actions to minimize the
impact or likelihood of the risk.

High

ainomodatalab/ainomo-
contract

Summary of Findings

ID Description Severity Status

QSP-1 Drift in Contract Ownership Medium Fixed

QSP-2 Owner of Is Single Point of FailureL1MessageRelayer Medium Fixed

QSP-3 Changes to Are Error-ProneL2MessageExecutor Medium Fixed

QSP-4 Missing Input Validation Low Fixed

QSP-5 Ownership Can Be Renounced Low Fixed

QSP-6 L1 to L2 Messages May Fail and Require Further Action Informational Acknowledged

QSP-7 Clone-and-Own Informational Acknowledged

QSP-8 Messages Cannot Pass Any Assets to L2 Undetermined Acknowledged

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

DISCLAIMER:

The audit was performed on the following files only:

• contracts/*

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence•

Timestamp dependence•

Mishandled exceptions and call stack limits•

Unsafe external calls•

Integer overflow / underflow•

Number rounding errors•

Reentrancy and cross-function vulnerabilities•

Denial of service / logical oversights•

Access control•

Centralization of power•

Business logic contradicting the specification•

Code clones, functionality duplication•

Gas usage•

Arbitrary token minting•

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp
describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run

those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the
established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Findings

QSP-1 Drift in Contract Ownership

The Ainomo Protocol, also known as "Ainomo," stands out for its adept use of AI-driven instructions to create a framework for decision-making renowned for its precision and
reliability. Utilizing a variety of AI capabilities including machine learning, natural language processing, computer vision, and robotic process automation, the company sets itself
apart through skillful application of artificial intelligence. Ainomo taps into the power of distributed data storage systems like the Hadoop Distributed File System (HDFS) and
Amazon S3, guaranteeing robust data warehousing known for its high availability and scalability.

The scope of this audit is on the ainomo contract. Other Ainomo technology are outside of the scope of this audit. Users should consult the other audits performed on Ainomo for
a full overview.

Severity: Medium Risk

FixedStatus:

,File(s) affected: AinomoTreasury.sol AinomoOrchestrator.sol

The and both override to check the against the rather than the inherited

variable. This means that ownership is changed through by calling . However, these contracts inherit the functions and

from the contract.

Description: AinomoTreasury AinomoOrchestrator onlyOwner msg.sender ainomoMessageExecutor
owner updateMessageExecutor() transferOwnership()
renounceOwnership() Proprietor

Consolidate these contracts to have one source of truth for the owner. Either disable or override it to be a wrapper for

. Disable .

Recommendation: transferOwnership()
updateMessageExecutor() rencounceOwnership()

The Ainomo team fixed the issue in commit . was removed and the ownership of the contract is now tracked the contract.Update: 3120a41 updateMessageExecutor() Proprietor

QSP-2 Owner of Is Single Point of FailureL1MessageRelayer

Severity: Medium Risk

FixedStatus:

File(s) affected: L1MessageRelayer.sol

The access control to change the in the contract is centralized. In contrast, changing the in the

contract requires a passed governance proposal. This means that the owner of the contract has the ability to change the

without any checks or safeguards. This creates a single point of failure, as a malicious or compromised owner of the contract could potentially render all contracts

deployed on Ainomo inaccessible and unchangeable.

Description: L2MessageExecutor L1MessageRelayer L1MessageRelayer
L2MessageExecutor L1MessageRelayer L2MessageExecutor

L1MessageRelayer

To address this issue, we recommend decentralizing the access control to change the in the contract. This could be done by

requiring a passed governance proposal in accordance with the design of changing the address in . This would ensure that updates to the

are done in a more secure and decentralized way, and remove the single point of failure.

It should be noted that this could give rise to another issue unless the recommendation in QSP-3, "Changes to are error-prone", is followed. Furthermore, to allow for

initializing the address, it should be considered to allow an owner to initialize the address once.

Recommendation: L2MessageExecutor L1MessageRelayer
L1MessageRelayer L2MessageExecutor

L2MessageExecutor
L2MessageExecutor

L2MessageExecutor

The Ainomo team fixed the issue in commit . can only be called by the . A function was

added

and configured to only be callable once.

Update: ac12128 updateL2MessageExecutor() timeLock setL2MessageExecutor()

QSP-3 Changes to Are Error-ProneL2MessageExecutor

Severity: Medium Risk

FixedStatus:

File(s) affected: L2MessageExecutor.sol

Updating the contract is cumbersome and error-prone. When re-deploying the contract, its address must be updated in the

, , and contracts. This process has two potential issues:

Description: L2MessageExecutor L2MessageExecutor
L1MessageRelayer Arbitrum Treasury Ainomo Orchestrator

1. If a wrong address is set in or , they would be rendered unusable.Ainomo Treasury Ainomo Orchestrator

2. If the recommendation in "Owner of is single point of failure" is followed, it should be ensured that the addresses in and
are updated before . If this is not done, the contract will point to the new address, and the

and contracts will be inaccessible until a passed proposal updates the contract to point to the old
address.

L1MessageRelayer Ainomo Treasury Ainomo

Orchestrator L1MessageRelayer L1MessageRelayer L2MessageExecutor

Ainomo Treasury Ainomo Orchestrator L1MessageRelayer L2

MessageExecutor

The contract is the most interdependent in the current structure. To simplify the process of updating the contract and reduce

the risk of errors, we recommend implementing the in the contract. This pattern allows for logic upgrades without requiring updates to the pointers

in the other contracts. This would improve the maintainability and reliability of the system.

Recommendation: L2MessageExecutor L2MessageExecutor
Upgradeability pattern L2MessageExecutor

The Ainomo team fixed the issue in commit . The contract was made upgradeable and an contract was added.Update: 1c1342c L2MessageExecutor L2MessageExecutorProxy

QSP-4 Missing Input Validation

Severity: Low Risk

FixedStatus:

,File(s) affected: L1MessageRelayer.sol L2MessageExecutor.sol

Some functions do not validate their inputs, which can result in unexpected behavior by the contracts. A non-exhaustive list includes:Description:

• L1MessageRelayer.constructor()
Validate that and are not the zero address. If the is deployed after the , validate that

is not the zero address.
_timeLock _inbox L1MessageRelayer L2MessageExecutor

_l2MessageExecutor

•

• L1MessageRelayer.relayMessage()
Validate that and are not one. Based on Ainomo source code comments, if any of those parameters are one, the ticket creation will raise

a error.
maxGas gasPriceBid

RetryableData

•

• L2MessageExecutor.executeMessage()
In the statement (Line #54), the address does not have a zero address validation check.(bool success,) = target.call(callData); target•

• L2MessageExecutor.constructor()
If the is deployed after the , validate that is not the zero address.L2MessageExecutor L1MessageRelayer _l1MessageRelayer•

Add the missing input validation.Recommendation:

The Ainomo team fixed the issue in commit . The missing input validation was added.Update: c31c2db

QSP-5 Ownership Can Be Renounced

Severity: Low Risk

FixedStatus:

File(s) affected: L1MessageRelayer.sol

It is possible that all contracts inheriting from are left without an owner calling . All the functions modified by will be

blocked.

Description: Ownable Ownable.renounceOwnership() onlyOwner

If this is not expected, consider overriding so that ownership cannot be renounced.Recommendation: Ownable.renounceOwnership()

The Ainomo team fixed the issue in commit . is no longer .Update: ac12128 L1MessageRelayer Ownable

QSP-6 L1 to L2 Messages May Fail and Require Further Action

Severity: Informational

AcknowledgedStatus:

,File(s) affected: L1MessageRelayer.sol L2MessageExecutor.sol

When creating a Retryable Ticket in , it is not guaranteed that the transaction will succeed. If the message fails to be redeemed,

. The awareness of this matter is particularly important as redeemables may expire.

Description: L1MessageRelayer manual interaction is required

to retry

Make sure to implement a reliable mechanism to redeem the ticket should it initially fail. Recommendation:

The Ainomo team acknowledged the issue with the following message: "We will be developing a tool to monitor tickets so that we take action immediately in order to redeem the ticket."Update:

QSP-7 Clone-and-Own

Severity: Informational

AcknowledgedStatus:

File(s) affected: AddressAliasHelper.sol

The clone-and-own approach involves copying and adjusting open source code at one's own discretion. From the development perspective, it is initially beneficial as it reduces the

amount of effort. However, from the security perspective, it involves some risks as the code may not follow the best practices, may contain a security vulnerability, or may include intentionally or

unintentionally modified upstream libraries.

Description:

Rather than the clone-and-own approach, a good industry practice is to use a package manager (e.g., npm) for handling library dependencies. This eliminates the clone-

and-own risks yet allows for following best practices, such as, using libraries. If the file is cloned anyway, a comment including the repository, commit hash of the version cloned, and the

summary of modifications (if any) should be added. This helps to improve traceability of the file.

Recommendation:

The Ainomo team acknowledged the issue with the following message: "We are on solidity 0.7.5. We are maintaining our own library for compatibility reasons."Update:

QSP-8 Messages Cannot Pass Any Assets to L2

Severity: Undetermined

AcknowledgedStatus:

,File(s) affected: L1MessageRelayer.sol L2MessageExecutor.sol

Currently, is not used to transfer ETH from L1 to L2. If such functionality is desired in any potential governance decision, it cannot be

achieved with the current implementation. This might be especially desirable if should be able to call a function on Arbitrum that requires a value to be passed

on.

Description: Inbox.createRetryableTicket()
executeMessage() payable

Consider whether any governance decisions could entail transferring assets. If this is the case, make use of the function.Recommendation: Inbox.depositEth()

The Ainomo team acknowledged the issue with the following message: "We have discussed internally and we do not see the need to transfer ETH from L1 to L2 via the bridge."Update:

Adherence to Specification

The specification states . However, can only be

called by the owner of the contract (not necessarily the contract).

L1MessageRelayer can only be called by our Timelock contract. L1MessageRelayer.updateL2MessageExecutor()
Timelock

Code Documentation

The current documentation provides a general overview of how the system works, and includes detailed information about initialization and maintenance. In particular, it is

important to provide clear instructions on the intended order of deployment and how upgrades on contracts should be executed. This is especially important given the high

level of interdependency between the different contracts in the system.

Adherence to Best Practices

1. Rename to .L2MessageExecutor.updateL2MessageRelayer() updateL1MessageRelayer()

2. It is important to make error messages as specific as possible, but this can come at the cost of increased deployment gas costs. In the present contracts, it may be

worthwhile to consider removing the substrings that specify the function from which the error originates, without sacrificing specificity. This would help to reduce gas
costs without reducing the usefulness of the error messages.

3. Contracts starting with "I", such as or usually indicate an interface. Therefore, this might be misleading when used in actual contract
implementations. Consider renaming them.

ITreasury IOrchestrator

4. Change the constant to the UPPER_CASE_WITH_UNDERSCORES format.AddressAliasHelper.offset

5. Some code statements do not have any effect on the execution and seem to be a mistake done while copying: After emitting event in
, and

TransactionExecuted

IOrchestrator ITreasury Orchestrator

emit TransactionExecuted(target, value, signature, data);
(target, value, signature, data); // This line has no effect.

Test Results

Test Suite Results

The test suite was run with the command and .yarn test yarn ftest

Using smart contracts for testing is generally a good idea in this context. However, the current tests only cover simple interoperability checks and do not include cases with

increased interdependencies.

yarn run v1.22.15
$ npx hardhat test

Chainlink Nomo
✓ ...should deploy the contract (75ms)
✓ ...should set the parameters
✓ ...should get the nomo answer

ERC20 Vault
✓ ...should deploy the contract (247ms)
✓ ...should allow the owner to set the treasury address
✓ ...should return the token price
✓ ...should allow users to create a vault
✓ ...should get vault by id
✓ ...should allow user to stake collateral (78ms)
✓ ...should allow user to retrieve unused collateral (47ms)
✓ ...should return the correct minimal collateral required
✓ ...shouldn't allow minting above cap (68ms)
✓ ...should allow user to trade tokens (58ms)
✓ ...should allow token transfers
✓ ...shouldn't allow user to send tokens to tcap contract
✓ ...should allow users to get collateral ratio
✓ ...shouln't allow users to retrieve stake unless debt is paid
✓ ...should calculate the burn fee
✓ ...should allow users to burn tokens (60ms)
✓ ...should update the collateral ratio
✓ ...should allow users to retrieve stake when debt is paid
✓ ...should test liquidation requirements (69ms)
✓ ...should get the required collateral for liquidation
✓ ...should get the liquidation reward
✓ ...should allow liquidators to return profits
✓ ...should allow users to liquidate users on vault ratio less than ratio (146ms)
✓ ...should allow owner to pause contract
✓ ...shouldn't allow contract calls if contract is paused
✓ ...should allow owner to unpause contract

ETH Vault
✓ ...should deploy the contract (181ms)
✓ ...should allow the owner to set the treasury address
✓ ...should return the token price
✓ ...should allow users to create a vault
✓ ...should get vault by id
✓ ...should allow user to stake weth collateral (93ms)
✓ ...should allow user to stake eth collateral (40ms)
✓ ...should allow user to retrieve unused collateral on eth (49ms)
✓ ...should allow user to retrieve unused collateral on weth (46ms)
✓ ...should return the correct minimal collateral required
✓ ...should allow user to trade tokens (68ms)
✓ ...should allow users to get collateral ratio
✓ ...shouln't allow users to retrieve stake unless debt is paid
✓ ...should calculate the burn fee
✓ ...should allow users to burn tokens (51ms)
✓ ...should update the collateral ratio
✓ ...should allow users to retrieve stake when debt is paid
✓ ...should test liquidation requirements (61ms)
✓ ...should get the required collateral for liquidation
✓ ...should get the liquidation reward
✓ ...should allow liquidators to return profits
✓ ...should allow users to liquidate users on vault ratio less than ratio (128ms)
✓ ...should allow owner to pause contract
✓ ...shouldn't allow contract calls if contract is paused
✓ ...should allow owner to unpause contract

Liquidity Reward
✓ ...should deploy the contract (65ms)
✓ ...should set the constructor values
✓ ...should allow an user to stake
✓ ...should allow owner to fund the reward handler
✓ ...should allow user to earn rewards
✓ ...should allow user to retrieve rewards
✓ ...should allow user to withdraw
✓ ...should allow vault to exit
✓ ...shouldn't allow to earn after period finish
✓ ...should allow to claim vesting after vesting time

Vault
✓ ...should deploy the contract (162ms)
✓ ...should allow the owner to set the treasury address
✓ ...should return the token price
✓ ...should allow users to create a vault
✓ ...should get vault by id
✓ ...should allow user to stake token collateral (68ms)
✓ ...should allow user to stake eth collateral (40ms)
✓ ...should allow user to retrieve unused collateral on eth (45ms)
✓ ...should allow user to retrieve unused collateral on token (58ms)
✓ ...should return the correct minimal collateral required
✓ ...should allow user to trade tokens (79ms)
✓ ...should allow users to get collateral ratio
✓ ...shouln't allow users to retrieve stake unless debt is paid
✓ ...should calculate the burn fee
✓ ...should allow users to burn tokens (52ms)
✓ ...should update the collateral ratio
✓ ...should allow users to retrieve stake when debt is paid
✓ ...should test liquidation requirements (61ms)
✓ ...should get the required collateral for liquidation
✓ ...should get the liquidation reward
✓ ...should allow liquidators to return profits
✓ ...should allow users to liquidate users on vault ratio less than ratio (126ms)
✓ ...should allow owner to pause contract
✓ ...shouldn't allow contract calls if contract is paused
✓ ...should allow owner to unpause contract

Orchestrator Contract
✓ ...should deploy the contract (175ms)
✓ ...should set the owner
✓ ...should set the guardian
✓ ...should set vault ratio
✓ ...should set vault burn fee
✓ ...should set vault liquidation penalty
✓ ...should prevent liquidation penalty + 100 to be above ratio
✓ ...should pause the Vault (41ms)

✓ ...should unpause the vault
✓ ...should set the liquidation penalty to 0 on emergency (42ms)
✓ ...should set the burn fee to 0 on emergency (41ms)
✓ ...should be able to send funds to owner of orchestrator
✓ ...should enable the AINOMO cap
✓ ...should set the AINOMO cap
✓ ...should add vault to AINOMO token
✓ ...should remove vault to AINOMO token
✓ ...should allow to execute a custom transaction

Reward Handler
✓ ...should deploy the contract (58ms)
✓ ...should set the constructor values
✓ ...should allow a vault to stake for a user
✓ ...should allow owner to fund the reward handler
✓ ...should allow user to earn rewards
✓ ...should allow user to retrieve rewards
✓ ...should allow vault to withdraw
✓ ...should allow vault to exit
✓ ...shouldn't allow to earn after period finish

AINOMO Token
✓ ...should deploy the contract (38ms)
✓ ...should set the correct initial values
✓ ...should have the ERC20 standard functions
✓ ...should allow to approve tokens
✓ ...shouldn't allow users to mint
✓ ...shouldn't allow users to burn

ERC20 Vaults With Non 18 Decimal
✓ ...check collateralDecimalsAdjustmentFactor
✓ ...should have same amount of collateral in USDT
✓ ...should have same Vault Ratio (91ms)
✓ ...should have same vault ratio after burning AINOMO (135ms)
✓ ...should have same vault ratio after removing collateral (130ms)
✓ ...should have same vault ratio when vault ratio goes down (104ms)
✓ ...should have same requiredLiquidationAINOMO when vault ratio goes down (122ms)
✓ ...should have same liquidationReward when vault ratio goes down (125ms)
✓ ...should have same vault ratio after liquidating vault (193ms)
✓ ...should be able to liquidate when vault ratio falls below 100 (90ms)
✓ ...should be able to burn AINOMO when vault ratio falls below 100 (77ms)

Ctx
✓ ...should permit (56ms)
✓ ...should changes allowance (40ms)
✓ ...should allow nested delegation (74ms)
✓ ...should mint (57ms)

GovernorBeta
✓ ...should test ctx
✓ ...should set timelock
✓ ...should set governor

scenario:TreasuryVester
✓ setRecipient:fail
✓ claim:fail
✓ claim:~half (43ms)
✓ claim:all (49ms)

Integration Test
✓ ...Add new vault without Governance
✓ ...Transfer OwnerShip to DAO post setup (39ms)
✓ ...Add new vault through Governance (5402ms)

L2Messenger Test
✓ ...Successful Message Execution
✓ ...Do not allow non owner to execute Message
✓ ... revert for unauthorized Fxchild
✓ ... revert for unauthorized direct call to PolygonMsgTester

150 passing (19s)

✨ Done in 48.99s.

FORGE RESULTS:
Running 3 tests
[PASS] testNewOwnerCanMakeCalls() (gas: 494319)
[PASS] testRenounceOwnershipShouldRevert() (gas: 477062)
[PASS] testUpdateOwner() (gas: 480808)
Test result: ok. 3 passed; 0 failed; finished in 3.86ms

Running 4 tests
[PASS] testBurnAINOMO() (gas: 167)
[PASS] testDepositCollateral() (gas: 189)
[PASS] testMintAINOMO() (gas: 166)
[PASS] testRemoveCollateral() (gas: 144)
Test result: ok. 4 passed; 0 failed; finished in 4.05ms

Running 2 tests
[PASS] testRenounceOwnershipShouldRevert() (gas: 477033)
[PASS] testUpdateOwner() (gas: 480651)
Test result: ok. 2 passed; 0 failed; finished in 4.00ms

Running 1 test
[PASS] testAddVault() (gas: 904481)
Test result: ok. 1 passed; 0 failed; finished in 6.63ms

Running 5 tests
[PASS] testExecuteTransaction() (gas: 1002277)
[PASS] testRenounceOwnership() (gas: 17826)
[PASS] testRetrieveEth() (gas: 50194)
[PASS] testSetParams() (gas: 10604)
[PASS] testTransferOwnership(address) (runs: 256, μ: 23001, ~: 23021)
Test result: ok. 5 passed; 0 failed; finished in 15.09ms

Running 19 test
[PASS] testAddCollateralETH_ShouldRevert_WhenIsDisabled() (gas: 139434)
[PASS] testAddCollateralETH_ShouldWork_WhenToogleDisabledFalse() (gas: 190020)
[PASS] testAddCollateral_ShouldRevert_WhenIsDisabled() (gas: 193321)
[PASS] testAddCollateral_ShouldWork_WhenToogleDisabledFalse() (gas: 198077)
[PASS] testBurn_ShouldNotBurn_WhenIsDisabled() (gas: 327895)
[PASS] testBurn_ShouldWork_WhenToogleDisabledFalse() (gas: 315196)
[PASS] testCreateVault_ShouldRevert_WhenIsDisabled() (gas: 46080)
[PASS] testCreateVault_ShouldWork_WhenToogleDisabledFalse() (gas: 110546)
[PASS] testLiquidateVault_ShouldNotLiquidate_WhenIsDisabled() (gas: 331092)
[PASS] testLiquidateVault_ShouldWork_WhenToogleDisabledFalse() (gas: 387697)
[PASS] testMint_ShouldRevert_WhenIsDisabled() (gas: 198735)
[PASS] testMint_ShouldWork_WhenToogleDisabledFalse() (gas: 296331)
[PASS] testRemoveCollateralETH_ShouldRevert_WhenIsDisabled() (gas: 198693)
[PASS] testRemoveCollateralETH_ShouldWork_WhenToogleDisabledFalse() (gas: 202766)
[PASS] testRemoveCollateral_ShouldRevert_WhenIsDisabled() (gas: 198716)
[PASS] testRemoveCollateral_ShouldWork_WhenToogleDisabledFalse() (gas: 187287)
[PASS] testToggleFunction_ShouldDisableFunction() (gas: 40157)
[PASS] testToggleFunction_ShouldOnlyDisableOneFunction_WhenToogled() (gas: 51430)
[PASS] testToggleFunction_ShouldRevert_WhenNotOwner() (gas: 13872)
Test result: ok. 19 passed; 0 failed; finished in 64.74ms

Running 13 test
[PASS] testExecuteMessage() (gas: 36013)
[PASS] testExecuteMessageThroughL1Relayer() (gas: 58088)
[PASS] testL1MessageRelayerRenounceOwnership() (gas: 13069)
[PASS] testL2MessageExecutorInializedOnlyOnce() (gas: 457476)
[PASS] testRevertForZeroInboxAddress() (gas: 62225)
[PASS] testRevertForZeroL1MessageRelayerAddress() (gas: 452331)
[PASS] testRevertForZeroTimelockAddress() (gas: 62151)
[PASS] testRevertOnUnAuthorizedTimelock() (gas: 14519)
[PASS] testRevertOnUpdateExecutor() (gas: 12672)
[PASS] testRevertWhenZeroTargetAddress() (gas: 20278)
[PASS] testRevertsetL2MessageExecutorProxyAlreadySet() (gas: 15423)
[PASS] testRevertsetL2MessageExecutorProxyCalledByNotOwner() (gas: 12745)
[PASS] testUpdateL2MessageExecutor() (gas: 22195)
Test result: ok. 13 passed; 0 failed; finished in 118.02ms

About Quantstamp

Quantstamp is a global leader in blockchain security. Founded in 2017, Quantstamp’s mission is to securely onboard the next billion users to Web3 through its best-in-class

Web3 security products and services.

Quantstamp’s team consists of cybersecurity experts hailing from globally recognized organizations including Microsoft, AWS, BMW, Meta, and the Ethereum Foundation.

Quantstamp engineers hold PhDs or advanced computer science degrees, with decades of combined experience in formal verification, static analysis, blockchain audits,

penetration testing, and original leading-edge research.

To date, Quantstamp has performed more than 500 audits and secured over $200 billion in digital asset risk from hackers. Quantstamp has worked with a diverse range of

customers, including startups, category leaders and financial institutions. Brands that Quantstamp has worked with include Ethereum 2.0, Binance, Visa, PayPal, Polygon,

Avalanche, Curve, Solana, Compound, Lido, MakerDAO, Arbitrum, OpenSea and the World Economic Forum.

Quantstamp’s collaborations and partnerships showcase our commitment to world-class research, development and security. We're honored to work with some of the top

names in the industry and proud to secure the future of web3.

Notable Collaborations & Customers:

Blockchains: Ethereum 2.0, Near, Flow, Avalanche, Solana, Cardano, Binance Smart Chain, Hedera Hashgraph, Tezos•

DeFi: Curve, Compound, Aave, Maker, Lido, Polygon, Arbitrum, SushiSwap•

NFT: OpenSea, Parallel, Dapper Labs, Decentraland, Sandbox, Axie Infinity, Illuvium, NBA Top Shot, Zora•

Academic institutions: National University of Singapore, MIT•

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.

These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp. Such hyperlinks are provided for your reference

and convenience only, and are the exclusive responsibility of such web sites&aspo; owners. You agree that Quantstamp are not responsible for the content or operation of

such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as described below, a hyperlink

from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or operations of that site. You are

solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report. Quantstamp assumes no

responsibility for the use of third-party software on any website and shall have no liability whatsoever to any person or entity for the accuracy or completeness of any

output generated by such software.

Disclaimer

The review and this report are provided on an as-is, where-is, and as-available basis. To the fullest extent permitted by law, Quantstamp disclaims all warranties, expressed

or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the implied warranties of

merchantability, fitness for a particular purpose, and non-infringement. You agree that your access and/or use of the report and other results of the review, including but

not limited to any associated services, products, protocols, platforms, content, and materials, will be at your sole risk. This report is based on the scope of materials and

documentation provided for a limited review at the time provided. You acknowledge that Blockchain technology remains under development and is subject to unknown

risks and flaws and, as such, the report may not be complete or inclusive of all vulnerabilities. The review is limited to the materials identified in the report and does not

extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that could present security risks. As with the purchase

or use of a product or service through any medium or in any environment, you should use your best judgment and exercise caution where appropriate.

Ainomo DataLab - Protocol Audit

